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Preface

The fourth edition of Quantum Chemistry and Spectroscopy includes many changes to
the presentation and content at both a global and chapter level. These updates have been
made to enhance the student learning experience and update the discussion of research
areas. At the global level, changes that readers will see throughout the textbook include:

Review of relevant mathematics skills. One of the primary reasons that students
experience physical chemistry as a challenging course 1s that they find 1t ditfficult to
transfer skills previously acquired 1n a mathematics course to their physical chemis-
try course. To address this 1ssue, contents of the third edition Math Supplement have
been expanded and split into 11 two- to five-page Math Essentials, which are insert-
ed at appropriate places throughout this book, as well as 1n the companion volume
Thermodynamics, Statistical Thermodynamics, and Kinetics, just betore the math
skills are required. Our intent 1n doing so is to provide “just-in-time” math help and
to enable students to refresh math skills specifically needed in the following chapter.

Concept and Connection. A new Concept and Connection feature has been
added to each chapter to present students with a quick visual summary of the most
important ideas within the chapter. In each chapter, approximately 10-15 of the
most important concepts and/or connections are highlighted in the margins.

End-of-Chapter Problems. Numerical Problems are now organized by section
number within chapters to make 1t easier for instructors to create assignments for
specific parts of each chapter. Furthermore, a number of new Conceptual Questions
and Numerical Problems have been added to the book. Numerical Problems from
the previous edition have been revised.

Introductory chapter materials. Introductory paragraphs of all chapters have
been replaced by a set of three questions plus responses to those questions. This new
teature makes the importance of the chapter clear to students at the outset.

Figures. All figures have been revised to improve clarity. Also, for many figures
additional annotation has been included to help tie concepts to the visual program.

Key Equations. An end-of-chapter table that summarizes Key Equations has been
added to allow students to focus on the most important of the many equations in
each chapter. Equations 1n this table are set in red type where they appear in the
body of the chapter.

Further Reading. A section on Further Reading has been added to each chapter
to provide references for students and instructors who would like a deeper under-
standing of various aspects of the chapter material.

Guided Practice and Interactivity

o MasteringTM Chemistry, with a new enhanced eBook, has been significantly
expanded to include a wealth of new end-of-chapter problems from the fourth
edition, new selt-guided, adaptive Dynamic Study Modules with wrong answer
teedback and remediation, and the new Pearson eBook, which 1s mobile friendly.
Students who solve homework problems using Mastering'™ Chemistry obtain
immediate feedback, which greatly enhances learning associated with solving
homework problems. This plattorm can also be used for pre-class reading quiz-
zes linked directly to the eText that are useful 1n ensuring students remain cur-
rent 1n their studies and in fhipping the classroom.

o NEW! Pearson eText, optimized for mobile gives students access to their
textbook anytime, anywhere.

« Pearson eText mobile app ofters offline access and can be downloaded for
most 10S and Android phones/tablets from the Apple App Store or Google Play

= Configurable reading settings, including resizable type and night-reading mode

« Instructor and student note-taking, highlighting, bookmarking, and search
functionalities

X
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o  NEW! 66 Dynamic Study Modules help students study effectively on their own
by continuously assessing their activity and performance in real time.

o Students complete a set of questions with a unique answer format that also asks
them to indicate their confidence level. Questions repeat until the student can
answer them all correctly and confidently. These are available as graded assign-
ments prior to class and are accessible on smartphones, tablets, and computers.

o Topics include key math skills, as well as a refresher of general chemistry concepts
such as understanding matter, chemical reactions, and the periodic table and
atomic structure. Topics can be added or removed to match your coverage.

In terms of chapter and section content, many changes were made. The most significant
of these changes are:

Chapter 17, on nuclear magnetic resonance (NMR), has been completely rewritten
and expanded with the significant contribution of co-author Alex Angerhofer. This
chapter now covers the nuclear Overhauser effect and dynamic nuclear polarization,
and presents an extensive discussion of how two-dimensional NMR techniques are
used to determine the structure of macromolecules in solution.

Section 5.4 has been revised and expanded to better explain conduction in solids.

Section 6.6 has been extensively revised to take advances in quantum computing
into account.

Section 8.4, on the origin of selection rules, has been revised and expanded to
enhance student learning.

Sections 14.5, 14.7, and 14.10 have been extensively revised and reformulated to
relate electronic transitions to molecular orbitals of the initial and final states.

Section 14.12 has been revised to reflect advances in the application of FRET to
problems of chemical interest.

For those not familiar with the third edition of Quantum Chemistry and Spectroscopy, our
approach to teaching physical chemistry begins with our target audience, undergraduate
students majoring in chemistry, biochemistry, and chemical engineering, as well as many
students majoring in the atmospheric sciences and the biological sciences. The following
objectives outline our approach to teaching physical chemistry.

Focus on teaching core concepts. The central principles of physical chemistry
are explored by focusing on core ideas and then extending these ideas to a variety
of problems. The goal 1s to build a solid foundation of student understanding in a
limited number of areas rather than to provide a condensed encyclopedia of physical
chemistry. We believe this approach teaches students how to learn and enables them
to apply their newly acquired skills to master related fields.

Illustrate the relevance of physical chemistry to the world around us. Physical
chemistry becomes more relevant to a student if it 1s connected to the world around
us. Therefore, example problems and specific topics are tied together to help the
student develop this connection. For example, topics such as scanning tunneling
microscopy, quantum dots, and quantum computing are discussed and illustrated
with examples from the recent chemistry literature. Every attempt 1s made to con-
nect fundamental ideas to applications that could be of interest to the student.

Link the macroscopic and atomic-level worlds. The manifestation of quantum
mechanics in the macroscopic world is illustrated by discussions of the band struc-
ture of solids, atomic force microscopy, quantum mechanical calculations of ther-
modynamic state functions, and NMR imaging.

Present exciting new science in the field of physical chemistry. Physical chem-
istry lies at the forefront of many emerging areas of modern chemical research.
Heterogeneous catalysis has benefited greatly from mechanistic studies carried
out using the techniques of modern surface science. Quantum computing, using
the principles of superposition and entanglement, is on the verge of being a viable
technology. The role of physical chemistry in these and other emerging areas is
highlighted throughout the text.



°* Provide a versatile online homework program with tutorials. Students who
submit homework problems using Mastering "™ Chemistry obtain immediate feed-
back, a feature that greatly enhances learning. Also, tutorials with wrong answer
feedback offer students a self-paced learning environment.

* Use web-based simulations to illustrate the concepts being explored and avoid
math overload. Mathematics 1s central to physical chemistry; however, the math-
ematics can distract the student from “seeing” the underlying concepts. To circum-
vent this problem, web-based simulations have been incorporated as end-of-chapter
problems in several chapters so that the student can focus on the science and avoid
a math overload. These web-based simulations can also be used by instructors dur-
ing lecture. An important feature of the simulations 1s that each problem has been
designed as an assignable exercise with a printable answer sheet that the student can
submit to the instructor. Simulations, animations, and homework problem work-
sheets can be accessed at www.pearsonhighered.com/advchemistry.

Effective use of Quantum Chemistry and Spectroscopy does not require proceeding
sequentially through the chapters or including all sections. Some topics are discussed
in supplemental sections, which can be omitted if they are not viewed as essential to
the course. Also, many sections are sufficiently self-contained that they can be readily
omitted if they do not serve the needs of the instructor and students. This textbook 1is
constructed to be flexible to your needs. I welcome the comments of both students and
instructors on how the material was used and how the presentation can be improved.

Thomas Engel
University of Washington
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Differential and integral culculus s used extensively in physical chemistry. In this unit  ME2.1  The Definition and Properties
we review the mosi relevant aspects of caloulus needed 10 understand the chapier dis- of a Function

cussions and o solve the end-of -chapier problems. ME22 The First Derivative
! s e
UPDATED! Introductory paragraphs of al! chapters A e s e
have been replaced by a set of three questions plus OF A FUNCTION MEZS T Rceocl Rl s
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of x. Most functions that we will deal with in physical chemistry Il.'smgjcﬂlnnd inflection Points
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Six) is defined ot a
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“ “4 Q'* e lim f{x) = fla) (ME2.1)
| MEZ.Z THE FIRST DERIVATIVE OF A FUNCTION
The first derivative of a function has as its physical imerpretation the slope of the func-

i tion evaluated at the point of interest. In order for the first derivative to exist at a
point @, the Tunction must be continuous al & = a, and the slope of the function at
r = g must be the same when approaching @ from x < a and ¥ > a. For example, the
slope of the function ¥ = & at the point ¢ = 1.3 is indicated by the line tangent to the
curve shown in Figure ME2. 1.
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8.1 Commutation Relations Mathematically, the first derivative of a function f{x) 15 denoted dF(x)/dx. It is
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Deviations .
Consaquences Of In arder for o (1) /dy o be defined over an interval in @, f{x) must be continuous over PR

8.5 (Supplementsl Section)
A 'I:Emgh'l: Expenment Using a the interval. Next. we presemt rules for differemtiating simple functions. Some of these

Entang Iem e nt Particle in 3 Thres-Dimensional fenctions and their derivatives are as follows:

Bas

(ME2.2)

af gix™ §
6.6 (Supplemental Section) {d: = any” ', where a is 3 constant and n is any real number iMEXLA)
Entangled States, Teloportation,
and Quantum C tors diac’)
WHY is this material important? = T e, whers @ s constan (ME2.5)
The measurement process 15 ditferent for a quantum-mechanical system than for a Fae i
classical system. For a classical system, all observables can be measured simultane- ey~ IMEL6)

ously, and the precision and sccuracy of the measurement is limited only by the a1

instruments used to make the measurement. For a quantum-mechanical system, some
observables can be measured simultaneously and exactly, whereas an uncertainty
relation limats the degree to which other observables can be known simultaneously
and exactly,

WHAT are the most important concepts and results?

Measurements carmed outl on a system in a superposition state change the state of the
system. Two observables can be measured simultaneously and exactly only if their
corresponding operators commute. Two particles can be entangled, after which their
properties are no longer independent of one another. Entanglement is the basis of both
teleportation and quantum computing.

WHAT would be helpful for you to review for this chapter?

It would be helptul to review the material on operators in Chapter 2.

‘Concept and Connection

6.1 COMMUTATION RELATIONS

In classical mechanics, & system can in principle be described completely. For instance,

the position, momentum, Kinetic energy. and potential energy of a mass falling in a
gravitational field can be determined simultaneously at any point on its trajectory. The

uncenainty in the measurements is only limited by the capabilities of the measurement  FOr @ quantum mechanical system,
techmque. The values of all of these observables (and many more) can be known simul. 1 s not generally the case that the
tancously. This is not generally wue for a quantum-mechanical system. In the quantum  values of all observables can be
world, in some cases two observables can be known simultaneously with high accuracy,  Known simultaneously

However, in other cases, two observables have a fundamental uncernainty that cannot be

chminated through any measurement techniques. Nevertheless, as will be shown later,
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MET.1 uNITS

Quantities of interest in physical chemistry such as pressure, volume, or temperature

-
-
- i
L
=
¥ [
]

ESSENWIAL 1:
Units, Significant
Solving End'|

Figures, and
Chapter Problems

ME1.1 Units
ME1.2 Uncertainty and Significant
Figures

are characterized by their magnitude and their units. In this textbook, we use the SI ME1.3 Solving End-otf-Chapter
(from the French Le Systeme international d'unités) system of units. All physical quan- Problems

tities can be defined 1n terms of the seven base units listed in Table M

N

=1.1. For more

details, see http://physics.nist.gov/cuu/Units/units.html. The definition of temperature
1s based on the coexistence of the solid, gaseous, and liquid phases of water at a pres-

sure of 1 bar.

TABLE ME1.1 Base Sl Units

Base Unit

Unit of length

Unit of mass

Unit of time

Unit of electric current

Unit of thermodynamic
temperature

Unit of amount of substance

Unit of luminous intensity

Unit

meter (m)

kilogram (kg)

second (s)

ampere (A)

kelvin (K)

mole (mol)

candela (cd)

Definition of Unit

The meter 1s the length of the path traveled by light in vacuum during a time
interval of 1/299,792,458 of a second.

The kilogram is the unit of mass; it 1s equal to the mass of the platinum iridium
international prototype of the kilogram kept at the International Bureau of
Weights and Measures.

The second 1s the duration of 9,192,631,770 periods of the radiation corre-
sponding to the transition between the two hypertfine levels of the ground state
of the cesium 133 atom.

The ampere 1s the constant current that, if maintained in two straight parallel
conductors of infinite length, 1s of negligible circular cross section, and 1t placed
| meter apart 1n a vacuum would produce between these conductors a force
equal to 2 X 10" kg ms™2 per meter of length. In this definition, 2 1s an

exact number.

The Kelvin 1s the unit of thermodynamic temperature. It 1s the fraction
1 /273.16 of the thermodynamic temperature of the triple point of water.

The mole 1s the amount of substance of a system that contains as many elemen-
tary entities as there are atoms in 0.012 kilogram of carbon 12 where 0.012 1s
an exact number. When the mole 1s used, the elementary entities must be speci-
fied and may be atoms, molecules, 10ns, electrons, other particles, or specified
groups of such particles.

The candela 1s the luminous intensity, in a given direction, of a source that
emits monochromatic radiation of frequency 540. X 10'? hertz and that has a
radiant intensity in that direction of 1/683 watt per steradian.

Quantities of interest other than the seven base quantities can be expressed in terms
of the units meter, kilogram, second, ampere, kelvin, mole, and candela. The most 1m-
portant of these derived units, some of which have special names as indicated, are listed
in Table ME1.2. A more inclusive list of derived units can be found at http://physics

nist.gov/cuu/Units/units.html.



MATH ESSENTIAL 1 Units, Significant Figures, and Solving End of Chapter Problems

TABLE ME1.2 Derived Units

Unit
Area

Volume

Velocity
Acceleration

Linear
momentum

Angular
momentum
Force

Pressure

Work

Kinetic energy
Potential energy

Power

Mass density
Radian

Steradian

Frequency

Electrical charge

Electrical potential

Electrical resistance

Definition

Size of a surface

Amount of three-dimensional space an object
occupies

Measure of the rate of motion
Rate of change of velocity

Product of mass and linear velocity of an object

Product of the moment of inertia of a body
about an axis and its angular velocity with
respect to the same axis

Any interaction that, when unopposed, will
change the motion of an object

Force acting per unit area

Product of force on an object and movement
along the direction of the force

Energy an object possesses because of its
motion

Energy an object possesses because of its
position or condition

Rate at which energy is produced or
consumed

Mass per unit volume

Angle at the center of a circle whose arc is
equal in length to the radius

Angle at the center of a sphere subtended by

a part of the surface equal 1n area to the square
of the radius

Number of repeat units of a wave per unit time

Physical property of matter that causes it to
experience an electrostatic force

Work done in moving a unit positive charge
from infinity to that point

Ratio of the voltage to the electric current that
flows through a conductive material

Relation to Base Units

kems

kg m’s~

kgems

m/m = 1
m?/m? = 1

==

As

ke m*s /A
W/A

ke m?s /A W /A

Special Name

newton

pascal

joule

joule

joule

watt

hertz

coulomb

volt

ohm

Abbreviation

mZ

m3

kems

kg m? s~

Pa

kg m >

m/m = 1

m?/m? = 1

Hz

If SI units are used throughout the calculation of a quantity, the result will have
SI units. For example, consider a unit analysis of the electrostatic force between two

charges:
po 2192 _ & _ A's®
8megr® 8w X kgTIS*AmT X m* 87 X kg7 Is*Am X m?
1 1
= —k 2 = — N
877 M3 87T

Therefore, 1n carrying out a calculation, it is only necessary to make sure that all quan-
tities are expressed in SI units rather than carrying out a detailed unit analysis of the

entire calculation.



ME1.3 SOLVING END-OF-CHAPTER PROBLEMS

ME1.Z UNCERTAINTY AND SIGNIFICANT
FIGURES

In carrying out a calculation, it 1s important to take into account the uncertainty of
the individual quantities that go into the calculation. The uncertainty i1s indicated by
the number of significant figures. For example, the mass 1.356 g has four significant
figures. The mass 0.003 g has one significant figure, and the mass 0.01200 g has four
significant figures. By convention, the uncertainty of a number is X1 in the rightmost
digit. A zero at the end of a number that 1s not to the right of a decimal point is not
significant. For example, 150 has two significant figures, but 150. has three significant
figures. Some numbers are exact and have no uncertainty. For example, 1.00 X 10°
has three significant figures because the 10 and 6 are exact numbers. By definition, the
mass of one atom of “C is exactly 12 atomic mass units.

If a calculation involves quantities with a different number of significant figures,
the following rules regarding the number of significant figures in the result apply:

°* In addition and subtraction, the result has the number of digits to the right of the
decimal point corresponding to the number that has the smallest number of dig-
its to the right of the decimal point. For example 101 + 24.56 = 126 and
0.523 + 0.10 = 0.62.

® In multiplication or division, the result has the number of significant figures cor-

responding to the number with the smallest number of significant figures. For
example, 3.0 X 16.00 = 48 and 0.05 X 100. = 5.

It 1s good practice to carry forward a sufficiently large number of significant figures in
different parts of the calculation and to round off to the appropriate number of signifi-
cant figures at the end.

ME 1.3 SOLVING END-OF-CHAPTER PROBLEMS

Because calculations in physical chemistry often involve multiple inputs, it 1s useful to

carry out calculations in a manner that they can be reviewed and easily corrected. For

example, the input and output for the calculation of the pressure exerted by gaseous

benzene with a molar volume of 2.00 L at a temperature of 595 K using the Redlich—
RT 1

a
Vm = b \/% Vm(Vm T b)
below. The statement in the first line clears the previous values of all listed quantities,
and the semicolon after each input value suppresses its appearance in the output.

Kwong equation of state P = in Mathematica i1s shown

In[36]:= Clear|[r, t, vm, a, b, prk]
¥ = 8,314 X 10>=23
t = 595;
vin = 2.00;
a = 452;
b= .08271;
T a I
prk =

vin— b \/JE vm (vm + b)
outl[42]= 21,3926

Invoking the rules for significant figures, the final answer 1s P = 21.4 bar.
The same problem can be solved using Microsoft Excel as shown in the following
table.

A B C D E F
1 R T |V, | a b =((A2*B2)/(C2-E2))-(D2/SQRT(B2))*(1/(C2*(C2+E2)))
2 0.08314 595 2 452 0.08271 21.35257941

3
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WIATH ESSENTIAL 2:
Differentiation

Ind Integration

Ditferential and integral calculus 1s used extensively in physical chemistry. In this unit
we review the most relevant aspects of calculus needed to understand the chapter dis-
cussions and to solve the end-of-chapter problems.

MEZ.| THE DEFINITION AND PROPERTIES
OF A FUNCTION

A function f 1s a rule that generates a value y from the value of a variable x. Mathemati-
cally, we write this as y = f(x). The set of values x over which f is defined is the do-
main of the function. Single-valued tunctions have a single value of y for a given value
of x. Most functions that we will deal with in physical chemistry are single valued.
However, inverse trigonometric functions and \/ are examples of common functions
that are multivalued. A function is continuous it 1t satisties these three conditions:

f(x) is defined at a

lim f(x) exists

X—>d

lim f(x) = f(a)

X—>a

(ME2.1)

MEZ.7 THE FIRST DERIVATIVE OF A FUNCTION

The first derivative of a function has as 1ts physical interpretation the slope ot the func-
tion evaluated at the point of interest. In order for the first derivative to exist at a
point a, the function must be continuous at x = a, and the slope of the function at
x = a must be the same when approaching a from x < a and x > a. For example, the
slope of the function y = x? at the point x = 1.5 1s indicated by the line tangent to the
curve shown 1n Figure ME2.1.

Mathematically, the first derivative of a function f(x) is denoted df(x)/dx. It is
defined by

df(x) . flx+h) = fx)
= lim

dx h—0 h

(ME2.2)

The symbol f’(x) is often used in place of df(x) /dx. For the function of interest,

df(x) _ . (x+h)” = (x)
dx h—0 h

d2hx + h?
— 11IM
h—(0 h

= ;‘}E}) 2x + h = 2x (ME2.3)

In order for df(x) /dx to be defined over an interval in x, f(x) must be continuous over
the interval. Next, we present rules for differentiating simple functions. Some of these
functions and their derivatives are as follows:

d(ax"
(dx ) = anx"~!, where a is a constant and # is any real number (ME2.4)
d(ac") |
= ae®, where a is a constant (ME2.5)
X
d In |
2 - (ME2.6)
dx X

ME2.1 The Definition and Properties
of a Function

ME2.2 The First Derivative
of a Function

ME2.3 The Chain Rule

ME2.4 The Sum and Product Rules

ME2.5 The Reciprocal Rule and the
Quotient Rule

ME2.6 Higher-Order Derivatives:
Maxima, Minima, and
Inflection Points

ME2.7 Definite and Indefinite
Integrals

0 f(x)
f(x)=x2 20 —

Figure ME2.1

The function y = x> plotted as a func-
tion of x. The dashed line 1s the tangent to
the curve at x = 1.5.
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MATH ESSENTIAL 2 Differentiation and Integration

d(a sinx) _

I — @ cosx, Wwhere a1s a constant (ME2.7)
d(a cosx) _ _

o = —a sinx, where a i1s a constant (ME2.8)

MEZ.3 THE CHAIN RULE

In this section, we deal with the differentiation of more complicated functions. Suppose
that y = f(u) and u = g(x). From the previous section, we know how to calculate
df(u)/du. But how do we calculate df(u) /dx? The answer to this question is stated as
the chain rule:

df(u) _ df(u) du

— ME2.9
dx du dx ( )
Several examples 1llustrating the chain rule follow:
dsin(3x)  dsin(3x) d(3x) 3 " (ME2.10)
o dBx)  dr cos(3x) :
din(x*) dIn(x*) d(x*) 2x 2
dx d( X ) dx X X

L 1\~
d(x-l—;) d(.x-l—;) d(x+ 1\~ .
7 ry) (1-3) oman

d exp(ax?) B d exp(ax?) d(ax?)
dx  d(ax?) @ dx

= 2ax exp(ax®), where ais a constant (ME2.13)

Additional examples of use of the chain rule include:

d(V3x¥3) Jdx = (4/3)V/3x!/3 (ME2.14)
d(563V%) Jdx = 15V263V2 (ME2.15)
d(4 sin kx) |
e = 4k cosx, where k1s a constant
d \/§c0521rx
( - ) _ —2\/3 sin2mx (ME2.16)

MEZ.4 THE SUM AND PRODUCT RULES

Two useful rules in evaluating the derivative of a function that is itself the sum or prod-
uct of two functions are as follows:

dl f(x) + ofx df(x de(x
(f(x) + 8(x)] _ df(x) _ ds() (ME2.17)
dx dx dx
For example,
d(x> + sinx dx?  dsi
( — ) = | ::x = 3x% + cosx (ME2.18)



MEZ2.6 HIGHER-ORDER DERIVATIVES: MAXIMA, MINIMA, AND INFLECTION POINTS

el (Z)f(x) i d{ff ) 4 f(x) d‘f) (ME2.19)
For example,
d| sin(x) cos(x) | = coil) d sin(x) - sinx) d cos(x)
dx dx dx
= cos’x — sin’x (ME2.20)

MEZ.5 THE RECIPROCAL RULE
AND THE QUOTIENT RULE

How 1s the first derivative calculated if the function to be differentiated does not have a
simple form such as those listed in the preceding section? In many cases, the derivative
1s found by using the product rule and the quotient rule given by

1
a(
f(X)) 1 df(x)
= ME2.21
dx F(x)]? dx A
For example,
d(sillilx) 1 dsinx —COSX
dx sinx  dx B sin%x (MELLL)
f(x) df(x do(x
A 5] s - e
= = (ME2.23)
dx [g(x)]?
For example,
d(i)
2 - o 2
sinx/ 2x SINX — X° COSX (ME2.24)

dx sinx

|\/|E2.6 HIGHER-ORDER DERIVATIVES: MAXIMA,
MINIMA, AND INFLECTION POINTS

A function f(x) can have higher-order derivatives in addition to the first derivative.
The second derivative of a function is the slope of a graph of the slope of the function
versus the variable. In order for the second derivative to exist, the first derivative must
be continuous at the point of interest. Mathematically,

d*f(x) _d (df(x))

dx®  dx\ dx

(ME2.25)

For example,

d*exp(ax®)  d[dexp(ax?)] d[2axexp(ax®)]

dx> dx| dx dx

= 2a exp(ax?®) + 4a*x? exp(ax?), where ais aconstant (ME2.26)

The symbol f”(x) is often used in place of d*f(x)/dx?®. If a function f(x) has a
concave upward shape (U) at the point of interest, its first derivative is increasing with
x and therefore f”(x) > 0. If a function f(x) has a concave downward shape (M) at the
point of interest, f"(x) < 0.

7
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f(x)

o

IIIIIIII

Figure ME2.2

f(x) = x> — 5x plotted as a function
of x. Note that it has a maximum and a

minimum in the range shown.

f(x)

The second derivative is useful in identifying where a function has its minimum or
maximum value within a range of the variable, as shown next. Because the first deriva-
tive is zero at a local maximum or minimum, df(x) /dx = 0 at the values x.x and Xmin.
Consider the function f(x) = x> — 5x shown in Figure ME2.2 over the range
=2y = x =27,

By taking the derivative of this function and setting it equal to zero, we find the
minima and maxima of this function in the range

d(x> — 5x)
dx

5
= 3x2 — 5 = (0, which has the solutions x = *+ \[3 = 1.291

The maxima and minima can also be determined by graphing the derivative and finding
the zero crossings, as shown in Figure ME2.3.

Graphing the function clearly shows that the function has one maximum and one
minimum in the range specified. Which criterion can be used to distinguish between
these extrema 1if the function 1s not graphed? The sign of the second derivative, evalu-
ated at the point for which the first derivative is zero, can be used to distinguish
between a maximum and a minimum:

Figure ME2.3
The first derivative of the function
shown in the previous figure as a

dzf(x) = d 'df(x)' < (0 for a maximum
dx? de| dx
d*f(x dldf(x)]
;x(z) = | {ii)_ > (0 for a minimum (ME2.27)

We return to the function graphed earlier and calculate the second derivative:

function of x.

M1
(o BN ¥

III!IIIIIIIIILI_LI

2

Figure ME2.4
f(x) = x° plotted as a function of x.
The value of x at which the tangent to the
curve is horizontal is called an inflection
point.

U

S

d*(x> — 5x) d[d(x*—5x)] dBx*—3)
E - =6 ME2.28
dx? |  dx dx * ( )
By evaluating
d*f(x 5
f(z) atx = i\[ = +1.291 (ME2.29)
dx 3
we see that x = 1.291 corresponds to the minimum, and x = —1.291 corresponds to
the maximum.
If a function has an inflection point in the interval of interest, then
df(x) d*f(x)
TR 0 and FO 0 (ME2.30)

An example for an inflection point is x = 0 for f(x) = x°>. A graph of this function in
the interval —2 = x = 2 1s shown in Figure ME2 4. In this case,
dx3

_ 3220 ar=0 and &)
dx—x— at X — an dxz

=6x=0 aax=0 (ME2.31)

|\/|E2.7 DEFINITE AND INDEFINITE INTEGRALS

In many areas of physical chemistry, the property of interest is the integral of a function
over an interval 1n the variable of interest. For example, the work done in expanding an
ideal gas from the initial volume V; to the final volume V/ 1s the integral of the external
pressure P,,, over the volume

Xg Vs
W= — / P.iernaiAdx = — / Poxiverat AV (ME2.32)
X V

i i

Equation ME?2.13 defines a definite integral in which the lower and upper limits of in-
tegration are given. Geometrically, the integral of a function over an interval 1s the area
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under the curve describing the function. For example, the integral f 3233 (x> — 5x)dx

1s the sum of the areas of the individual rectangles in Figure ME2.5 in the limit within
which the width of the rectangles approaches zero. If the rectangles lie below the zero
line, the incremental area 1s negative; if the rectangles lie above the zero line, the incre-
mental area is positive. In this case, the total area is zero because the total negative area
equals the total positive area.

The integral can also be understood as an antiderivative. From this point of view,
the integral symbol is defined by the relation

#(x) = / dj;f) dx (ME2.33)

and the function that appears under the integral sign is called the integrand. Interpreting
the integral in terms of area, we evaluate a definite integral, and the interval over which
the integration occurs 1s specified. The interval 1s not specified for an indefinite integral.

The geometrical interpretation is often useful in obtaining the value of a definite in-
tegral from experimental data when the functional form of the integrand is not known.
For our purposes, the interpretation of the integral as an antiderivative 1s more useful.
The value of the indefinite integral [ (x> — 5x)dx is that function which, when differ-
entiated, gives the integrand. Using the rules for differentiation discussed earlier, you
can verily that

4

5 2
/ (x3 — 5x)dx = 2 ; e (ME2.34)

Note the constant that appears in the evaluation of every indefinite integral. By
differentiating the function obtained upon integration, you should convince yourself
that any constant will lead to the same integrand. In contrast, a definite integral has no
constant of integration. If we evaluate the definite integral

2.3
4 2 4 2
5 5
(x3 — 5x)dx = (‘x il c) = (“’ 2. c) (ME2.35)
4 x=2.3 x=—2.3

2 - 2
—2.3
we see that the constant of integration cancels. The function obtained upon integration

. . 2.3 . . .
is an even function of x, and |, 3(x3 — 5x)dx = 0, just as we saw in the geometric

interpretation of the integral.

Some indefinite integrals are encountered so often by students of physical chem-
istry that they become second nature and are recalled at will. These integrals are
directly related to the derivatives discussed in Sections ME2.2-MEZ2.5 and include the

following:

/ df(x) = f(x) + C

n+1
/x”dx= * =

, n+1

/ 'f =Inx + C (ME2.36)
/ e = ix - C, where ais a constant (ME2.37)
/ sinxdx = —cosx + C (ME2.38)

/ cosxdx = sinx + C (ME2.39)

f(x)

Figure ME2.5

The integral of a function over a given
range corresponds to the area under
the curve. The area under the curve

is shown approximately by the green
rectangles.
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Although students will no doubt be able to recall the most commonly used inte-
grals, the primary tool for the physical chemist in evaluating integrals 1s a good set of
integral tables. Some commonly encountered integrals are listed below. The first group
presents indefinite integrals.

1
/ (sinax)dx = —_cosax + C (ME2.40)
. .
/(cosax)dx = —sinax + C (ME2.41)
) 1 |
(sin“ ax)dx = —x sin2ax + C (ME2.42)
_ 2 4a
, 1 1 .
(cos“ax)dx = o, i a0 sin2ax + C (ME2.43)
: a
2 .
. X cos2bx  xsin2bx |
| / x sin“bxdx = A . b FC (ME2.44)
2 .
5 _x® cos2bx  xsin2bx
| / X cos“ bxdx = i 22 | 15 = C (ME2.45)
3 oD I 4 L 5 1 : 1
(x*sin“ax)dx = —x X sin 2ax xcos2ax + C
6 4a 8a> 4a°
(ME2.46)
(x“cos“ax)dx = —x° X sin2ax - x:cos2ax + €
6 4a 84 4a*
(ME2.47)
/t(s'na \dx 3cosax  cos3ax o (ME2.48)
111 dx e 1 | .
4a 12a
2.2 .
ax” — 2jcosax 2
/ T 2) - S C (ME2.49)
a a
2.2 :
a“x® — 2)sinax 2
/ (& casatyte = > : Jsinax. T (ME2.50)
a a
/ XMy =~ — / L%y + C (ME2.51)
ax 1 ax ax
/e—dx= A /""_ dx + C (ME2.52)
o X m—1x"1 m-—1] yn1
/ e Wdr = —° z (a*r* + 2ar + 2) + C (ME2.53)
a
The following group includes definite integrals.
/sin(m) X sin(mwx)dx - /cos(@) X cos(mﬁx)dx - Eﬁm
a a a a 2
0 0
where 0,,,isoneifm = nandQifm # n (ME2.54)

/ sin(naﬂ) X cos(”aﬂ) de = 0 (ME2.55)
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/ sin?mx dx = / cos?mx dx = g (ME2.56)
0 0
/smx g Cf;f ge = | g (ME2.57)
0 - 0 o
i
/ x"e dx = —— (a > 0, n positive integer) (ME2.58)
g a
1:3-5:++(2n — 1
f P dy = 2”“( ) )\/j (a > 0, npositive integer)  (ME2.59)
d
0
2n+1 -'a.xzdx n! g :
x" e = ot (a > 0, n positive integer ) (ME2.60)
3 a
y 1/2
/ ey = (4—";-) (ME2.61)
0

Commercially available software such as Mathematica™, Maple™, Matlab™, and
MathCad™ can evaluate both definite and indefinite integrals.
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Many quantities that we will encounter in physical chemistry are tunctions of several
variables. In that case, we have to reformulate differential calculus to take several vari-
ables 1nto account. We define the partial derivative with respect to a specific variable
just as we did 1n Section ME2.2 by treating all other variables indicated by subscripts
as constants. For example, consider 1 mol of an ideal gas for which

RT

P=f(V.T) ="

(ME3.1)

Note that P can be written as a tunction of the two variables V and 7. The change in P
resulting from a change in V or T is proportional to the following partial derivatives:

(ap> . P(V + AV, T) — P(V.T) ; R ( ] 1)
S g = |lim = — 11MAyYV—s
oV ) 7 AV=0 AV W=0Ay\v+ AV vV
. R ( —AV )  RT
= limpy—s =
AW20Aviv2 + vav) w2
(ap> L P(V.T + AT) = P(V.T) _ | [R(T + AT) RT
oT ) — HMAT—0 AT — HIMAT—( AT | v v
R
= — ME3.2
” ( )
The subscript y in (df/dx), indicates that y is being held constant in the differ-
entiation of the function f with respect to x. The partial derivatives in Equation 5: /

ables change. For example, what 1s the change 1n P if the values of 7 and V both
change? In this case, P changes to P + dP where

dP = (M)) dT + (ap) dv = Rar RTdv
oT v oV ) 1 % V2

Consider the following practical illustration of Equation (ME3.3). You are
on a hill and have determined your altitude above sea level. How much will the
altitude (denoted z) change 1f you move a small distance east (denoted by x)
and north (denoted by y)? The change 1n z as you move east 1s the slope of the
hill in that direction, (dz/dx),, multiplied by the distance dx that you move. A
similar expression can be written for the change 1n altitude as you move north.
Therefore, the total change in altitude 1s the sum of these two changes or

d 0
dz—(z>dx I (Z> dy
0x / ay /

(ME3.2) allow one to determine how a function changes when all ot the vari- /

ga:m
w

(ME3.3)

Sea level
=0

Figure ME3.1
Able Hill contour plot and cross section. The
cross section (bottom) 1s constructed from the

(ME34)

The first term 1s the slope of the hill in the x direction, and the second term 1s the
slope 1n the y direction. These changes in the height z as you move first along
the x direction and then along the y direction are illustrated in Figure ME3.1.
Because the slope of the hill 1s a function of x and y, this expression for dz
1s only valid for small changes dx and dy. Otherwise, higher-order derivatives
need to be considered.

contour map (top). Starting at the point labeled z
on the hill, you first move in the positive x direc-

tion and then along the y direction. If dx and dy
are sufficiently small, the change in height dz is

d J
given by dz = ( Z) dx + ( Z) dy.
dx / dy
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